Hanford Technical Assistance Project

Extension of Rocky Flats Equivalency for Lower Temperature Stabilization of Chloride-Bearing Pu Oxide

Purposes of Workshop

- Review categories of Hanford Pu material with chloride
- Discuss chloride wash option
- Determine how lower calcination T (800 °C) can be defended
- If needed, define logic for lower T
- Define path forward; assign actions

Purposes of Calcination

- Eliminate reactive materials (metal/substoichiometric oxides)
- Eliminate organic materials
- Reduce water content (and water-producing species) to <0.5 wt%
- Minimize potential for readsorption of water above 0.5 wt%
- Stabilize any other potential gas-producing constituents

Chloride Vapor Pressures

200 °C reduction of stabilization temperature reduces chloride volatility by a factor >20

Calcination of Oxyanion Salts

Changing the Calcination Temperature

Requires either:

- Modification of DOE STD 3013, or
- Exemption from DOE STD 3013, or
- Equivalency to DOE STD 3013

Technical Case for Either Option:

- Must show that all calcination purposes are adequately addressed at the lower calcination T, or
- Calcination purposes that cannot be addressed either do not mitigate a significant risk, or can be managed via surveillance and monitoring programs

The Logic of Equivalency

- Report must argue, for any potential constituent of concern, that:
 - It isn't there, or
 - It will be gone by 750 °C, or
 - It will still be there at 950 °C, or
 - It won't make a difference to gas generation or corrosion anyway, and
 - Any threat to a container would be detected

Electrorefining Process Flow Diagram

Pu Content of ER Oxides

Rocky Flats Electrorefining Oxide

Major Constituents of RFETS ER Oxides

IDC	067		086		
MIS Item Number	CLLANL025 (HL025)		C00695 (T0695)		
Calcination	As Received	950 °C	As Received	800 °C	950 °C
Pu (wt%)	71.30	78.30	69.17	74.48	77.15
O* (wt%)	9.54	10.48	9.26	9.97	10.33
Cl (wt%)	10.00	5.90	9.00	7.00	5.50
K (wt%)	5.12	2.90	3.47	2.76	1.75
Na (wt%)	1.96	1.01	7.43	2.22	1.77
Mg (wt%)	0.55	0.38	2.00	0.94	0.72
Trace Constituents (wt%)	1.33	1.37	0.85	1.14	1.49
Sum* (wt%)	99.79	100.33	101.17	98.49	98.69

^{*} Calculated based on all Pu as PuO_2

Trace Constituents of RFETS ER Oxides

IDC	067	1	086		
MIS Item Number	CLLANL025 (HL025)		C00695 (T0695)		
Calcination	As Received	950 °C	As Received	800 °C	950 °C
C (wt%)	0.02	0.01	0.01	0.02	0.01
S (wt%)	< 0.0084	0.02	0.08	0.03	0.18
F (wt%)	0.14	0.06-0.11	0.03	0.03	0.03
Al (wt%)	0.34	0.34	0.02	< 0.003	< 0.0062
Si (wt%)	0.38	0.43	< 0.16	< 0.16	< 0.16
Ni (wt%)	0.09	0.05	0.27	0.71	0.39
Fe (wt%)	0.04	0.04	0.08	0.07	0.25
Ca (wt%)	.01	.01	.04	.02	.15
Am (wt%)	0.18	0.20	0.10		0.24
Other trace constituents	0.12	0.16	0.06	0.10	0.08
Sum (wt%)	1.33	1.32-1.37	0.85	1.14	1.49

Major Constituents of IDC 086

Major Constituents of CI-bearing Oxides

TGA Peak Temperature

Reduction of TGA peak temperature requires demonstration that:

- No moisture comes off above peak T, or
- Reasonable bound can be placed on amount released above peak T
- Total measurement uncertainty remains low enough

Moisture Content of C00695 (T0695)

Phase chemistry of impure oxide

	Material As Received by MIS	After 750 C Stabilization	After 950 C Stabilization				
Major Phases							
PuO ₂	>34-100 wt %	Slight increase possible	Slight increase				
NaCl	>0-38 wt %	Slight decrease expected	Significant decrease expected				
KCl	>0-39 wt %	Slight decrease expected	Significant decrease expected				
Minor Chloride Phases							
PuCl ₃	Potentially present	Probably absent	Probably absent				
PuOCl	Potentially present	Potentially present	Potentially present				
KMgCl ₃	Potentially present	Potentially present	Potentially present				
Na ₂ MgCl ₄	Potentially present	Potentially present	Potentially present				
MgCl ₂	Probably absent	Probably absent	Probably absent				
Residual Metal Phases							
Pu metal	Potentially present	Potentially present	Potentially present				
Mg metal	Potentially present	Potentially present	Potentially present				
Other Minor Phases							
Na ₂ O	Potentially present	Probably absent	Probably absent				
K ₂ O	Potentially present	Probably absent	Probably absent				
MgO	Potentially present	Potentially present	Potentially present				
NaOH	Probably absent	Probably absent	Probably absent.				
Na ₂ CO ₃	Probably absent	Probably absent	Probably absent.				
КОН	Probably absent	Probably absent	Probably absent.				
K ₂ CO ₃	Probably absent	Probably absent	Probably absent.				
Mg(OH) ₂	Potentially present	Potentially present	Potentially present				
MgCO ₃	Potentially present	Potentially present	Potentially present				
Adsorbed H ₂ O/OH	Potentially present	<0.2 wt % expected	<0.2 wt % expected				
Adsorbed CO ₂ /CO ₃ ⁻²	Potentially present	<0.2 wt % expected	<0.2 wt % expected				

Building on the RFETS case

- Reactive materials argument appears OK
- Organic materials should be OK
- Reduction of water content RFETS data on ER Oxides for some materials
- Readsorption concern about Mg salts?
- Gas-producing constituents 94-1 review adequate?

